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There is given a formulation of quasistatic mixed problems of the mechanics 

of a deformable solid in displacements (problem A) and in stresses (problem 

B) l 
There is presented an appropriate variational formulation of these 

problems on the basis of introducing a Lagrangian and a Castiglianian, and 
also the determination of the generalized solution of these problems, Under 
certain constraintes on the governing relations, there are proved theorems for 
the existence of the generalized solution of the problem A and its uniqueness, 

a theorem on the minimum of the Lagrangian, and also the convergence of 
successive approximations under the condition that the corresponding linear 

problem has a linear solution. There are considered methods to accelerate the 

convergence, including a “rapidly converging” successive approximations 
method having a substantially higher rate of convergence than a geometric 
progression. There is presented a new formulation of the quasistatic problem 

on the mechanics of a deformable solid in stresses (problem B) , which con- 
verges to the solution of six equations in the stress tensor components with 

six boundary conditions. There is proved the equivalence of the formulation 

of the problem B to classical formulations. 

1. ln a certain Cartesian coordinate system, let the governing relationships con- 

necting the stress tensor u and the strain tensor 8 be given in operator from [1] 

oij = Fij (8) (1.1) 

We consider the strains small so that the Cauchy relationships connecting them to 
the displacement vector are satisfied 

Eij = l/s 
(Ujrj + Ujlt) (E = Def U) (1.2) 

Let the equilibrium equations of the medium be given (X are given volume forc- 
es) as well as boundary conditions of mixed type: the displacements u” are given on 
the part Z I of the body boundary, and the load S” on the other part X, 

0.3) 

We will consider all the functions under consideration to possess the smoothness 
needed to perform the manipulations used, and to vary in the time segment IO, t11, 
I.e., o\c t\< il. Moreover, we shall assume the presence of a ” natural” state 
i.e. , we shall consider that the strain and stress tensors together with all their derivativ- 
es are zero in the time preceding t = 0 . We consider the operator (1.1) local in 
the coordinates X. 
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Substituting (1.2) into (1.1) and the result into (1.3), we obtain a system of three 
equations in the displacement vector components u with given boundary conditions 

oij, j(U) -i_ xi = 0 (1.4) 

ni I& = niO, %j (u) nj IX? = siO 

The abbreviated writing clij (uf means the fo~o~ng: 

(3ii (U) G Fij (E (U)) 

where eij (u) are determined by the relationships (1.2). 
A formula~on of the quasistatic (static) problem of the mechanics of a deformable 

solid is given in displacements(problem A) by the relationships (1.1 jfl. 3). 
Let us multiply (1.4) scalarly by the as yet arbitrary vector v and let us integrate 

over the volume V occupied by the body. Then by using the Ostrogradskii-Gauss 
theorem [I] and the static boundary conditions in (1.4), we obtain 

s Oi&j (V) dV = AC (V) A- Ax, (V) (1.5) 
V 

where A” (v) is the work of the external forces in displacements v , and Ax, (v) is 
the work of the internal forces at a given displacement v. 

Let US call the arbitrary vector field v (x, t) a kinematic system, and the arbitr- 
ary field of second-rank symmetric tensors t (x, t) a static system. A kinematic sys- 

tem satisfying the kinematic boundary conditions in (1.3) is called kinematically ad- 
missible. We will write 

v= U, if 272 1 El - U$” 

A system satisfying the equilibrium equations (1.3) and static boundary conditions is 
called statically admissible. We will write 

Z FZ T, if Tij, j + Xi = 0, Tijt2j I& = Sio 

The difference between two kinematically admissible systems satisfies the homogene- 
ous kinematic boundary conditions 

v fz U,, if uI lx, = 0 (1.6) 

and the difference between two statically admissible systems satisfies the homogeneous 
equilibrium equations and the homogeneous static boundary conditions 

T e To, if r2i.i = 0, Tijnj I,& = 0 (1.Q 

It follows from (1.6) and (1.5) that for the function V (X) E ua, from (I. 4), the 

expression below is valid 

s 
oij&ij (v> dli = A’ (V) (a.81 

V 

2. Let US can the fun&ion u G U for which the Cauchy relations (1.2) and 

the governing equations (X.1) are valid and which satisfies the identities (1.8) for 
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every efficiently smooth 6mction v G Us the generalized solution of problem A. 
In other words, a function u E 6’ satisfying the integral identity 

i Oij (U) Eij (V) dl/ = A” (V) 
(2.1) 

for every smooth function v E U, is called a generalized solution of problem A . 
It has been shown above that the solution of problem A is also its generalized 

solution. 

Theorem 2. 1. If the generalized solution is sufficientIy smooth, then it 
is a solution of problem A . 

Jn fact, the solution of problem- A should satisfy conditions (1.1)-( 1.3). By the 
definition of a generalized solution, the relationships (1.1) and (1.2) and the first of 
the boundary condiUo~ in (I. 3) are satisfied. Apply~g the ~~ogra~~-Gau~ theor- 
em to the identity (1.Q we obtain 

(2.2) 

Because of arbitrariness of the field v E Uu I the equilibrium equations and the 
static boundary conditions (I.. 3) hence follow, 

Now, let us assume that thestress tensor is derivable from a potential. This means 
that there exists a scalar operator of the strain I4’ (8) such that 

(2*3) 

A ~nctional derivative is meant here, which is determined as follows, together 
with the differential Df of the operator f (a): 

Df{a,b}= $bij ---$-f(a+Eb)lg=, c I ij 

where g is a numerical parameter. 
If the relaUo~i~ (2.3) are valid and the mass and surface forces possess a 

potential, then the *’ Lagrangian” L can be introduced by means of the formula 

L (u) 3 CD (u) - A’ (u), aqll)GS WdV 
V 

The identity (2.1) can then evidently be written in the form 

DL {E (u), 8 (v)} = D {u, v) = 0 

Thus, the problem of seeking a generalized solution of the problem A is equivalent 
to the problem of seeking the “stationary point” of the Lagrangian L (u). 

If the relationships (2.3) are sufficiently smooth, then functional derivatives of 
the type 

can be constructed, 

L e m m a 1, If functional derivatives (2.5) of the governing relations (2.3) 
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exist, then the following identity is valid 

@ (uz) = @ (UI) + Ae (Us - Ul) + 

1 

S 

a5.. 
2 <'Ul + rl(Uz -'b)) [%l b) - %I ($)I X 

(2.6) 

In fact, we introduce a function of the numerical argument % 

f (E) = @ {u1 - % (us - u1)1, 0 f % < 1 (2.7) 

which admit the following representation on the segment mentioned 

f (1) = f (0) + f’ (9) + ‘M” (n), 9 < rl < 1 (2.8) 

Substituting the expresssions obtained from (2.7) into (2.8) and taking account of(2.3) 
and (2.4), we obtain 

@ (UZ) = @ (~1) + 5 “ij (us) (eij (us) - “ij (ul)I d’ i- 

1 

s 

au.. 
2 ae,, 2 {UI +11 @a -Ud) [Et) (ua) -Ql (S)l [&ii ('b) - Eijbh)ldV 

V 

Taking account of (1.8), we hence obtain (2.6). 

Theorem 2. 2. Let us assume that the governing equations (1.1) are such 
that for each symmetric tensor of the second rank h the following inequality is satis- 

fied 
a3.. 
1) 

[ 1 aEkI 
&I hj > moh&+ no>0 

Then the stationary point of the Lagrangian (2.5) has a minimum. 
Indeed, by setting us = v E u, in the identity (2.6), and u1 = u*, where 

u* is a solution of the problem A , we have, by taking (2.9) into account7 

L (v) E 0 (v) - A” (v) > 0 (u*) - Ae (u*) -t- 

m -SE~~(V-U*)E~~(Y-UU*)~V>~(U*)-A~(U*)~L(U’) 
2 

v 
QED. 

T h e o r e m 2 . 3. If the conditions (2.9) are satisfied, then there exist not 
more than one generalized solution of problem A. 

Let us assume the opposite: there exist solutions u1 and ua . Then it follows 
from (2.1) that they satisfy the identity 

\ l0i.i (U2) - %j t"l)l Eij tv) dV 
+ 

Furthermore 
[oij (UZ) - oij (Ul)I aij (v) = ? aa.. s n 

* (U1 -i- E (U2 - UI)) IEkl (UP) - Ekl (U1)l &ij Cv)4 

(2.10) 

(2.11) 

Y 

Hence, setting eij (v) G &ij (II.& - Eij (Us), we obtain from (2.9) 
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O> S [$j (US) - oij (%)I [eij (US) - &ii l”l)l (IiV > 
V 

’ m. s Eij (U-2 - Ul) eij (US - Ul) UTV 
V 

It hence follows that 

eij (%) 3 &ii t”J 

i. e., the fields u1 (x) and us (s) can differ only by the displacement as a rigid 
whole. However, because of the first of the boundary conditions in (1.4), such dis- 
placements are not admissible. Hence, the uniqueness of the solution of problem A 
follows. 

T h e o r e m 2 . 4. The point of the Lagrangian minimum is unique. Let 11~ 
and us be two points of the minimum of the functional L. Then condition 
(2.1) is satisfied for them and us E u1 because of Theorem 2.3. 

3. Now let us consider a certain linear tensor operator of the strain 

Pii = pij te) 

such that the quantity 

(UT v)p 3 S Pij(u) Eij(V)di’ 
V 

(3.1) 

(3.2) 

satisfies all scalar product axioms [Z] in the functional space u E U. such that the 
functional space n under consideration is a Hilbert space. Moreover, let the opera- 

tor (3.1) be such that the inequalities 

are satisfied for the arbitrary symmetric tensor h . 
Let us note that if 

pij (8) 5 l/2 (6ik6jl + 6,[Sjk) ekl = Eij 

then the first of the inequalities (3.3) is equivalent to the inequality (2.9) for m = 

mo * where the fact that the space n is a Hilbert space follows in this case 
from the Kom inequalities p]. 

Now, if a unique generalized solution of the problem A exists for the case when 

the operator of the governing relationships (1.1) is the operator Pi j of (3.1) (the 
problem A,,) , successive approximations method can be constructed 

pij, j (Ucn+l)) = pij, j (U’“‘) - p’“’ [Oij, j (Ucn)) + Xi] (3.4) 

np+l) Jr, _ UC, pij (U(n+l)) nj I& = 

flij (la’“‘) T&j 1% - fi’“’ [Oii (U’“‘) ?Zj 1% - SC1 

starting with some zero approxi.mation u(O) and be setting n = 0, I,. . . . 

Theorem 3. 1. Let a unique generalized solution of the problem 4 exist, 
conditions (3.3) be valid, the volume and surface forces belong to the spaces L,{ [2], 
where [4] 
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x fz L, (V, 4 > 6/5; S" E L, (Z,), q > 4/3 (3.5) 

Moreover, let the condition 

[orj (U’“‘) - pij(U’“‘)] hij < mpij (h) hi] (3.6) 

be satisfied for the zero approximation u(O) for an arbitrary symmetric tensor h 
Then in a certain neighborhood 

II u - u(O) 11 p < 7. (3.7) 

there exists a generalized solution u * of the problem A which is unique in this neigh- 
borhood, and for any value of the iteration parameter 0 E (0, 2/M] the successive 

apprOXiIW&iOm process (3.4) starting with U(O) converges to it, where 

11 0) - u(O) lip < q* 1) u(O) - u* lip (3.8) 

q z max (I 1 - pm 1 , ] 1 - fJM I) < 1 

For the proof we examine the identity 

J pij (11) Eij (V) S = J Pij C”) ‘ij tv) Cl’ - 
V 

f3 [J uij (u) Eij (v) ii - Ae w] 
V 

(3.9) 

On the left in (3.9) is the scalar product (u, v&. The right side is a linear function- 
al Of V according to (3.3). Using the imbedding theorem of Sobolev [5], it can be 
established that for this it is necessary that condition (3.5) be satisfied. Then, by the 

RiesZ theorem, this functional can be represented as the scalar product (u’, v), where 

u’ E I-I. Therefore, a certain operator Q sets each function u G II in corres- 

pondence to the function u’ CC II. Hence, finding the generalized solution of the 
problem A converges to solving the operator equation 

II = Qu 

From (3.9), by using the equality (2.11) and condition (3.3) we have for two vector 
fields u1 and ua and their difference w = us - u1 

1 (Qua - Qw wbl = I(w,Vp- (3.10) 

B J [oij (US) - Oij (Ul)lwijdv I< Q II W lip2 

Wij d,ij (lit) - Eij (Lli) 

where q is determined from the second relationship in (3.8). Hence 

\I--firnl >,\I---WI, o<B=G2/(m+W 

II - PM I > I 1 - Pm I, 2/(m + W < B 6 2/M 

Consequently, the condition q < 1 is satisfied for 0 < p < 2/M and the in- 

equality (3.15) is satisfied if 

II Qu, - Qu, IIP < Q II 4 - Ul IIP (3.11) 

Let us note that the least value q = (M - m)l(M + m) of the quantity Q is rea- 
ched for p = 2/(m f M). Let us also note that the value of p can change in each 
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iteration step so that p@) e (0, 2/M]. 
It follows from the inequality (3.11) that the operator Q performs a compression 

mapping in n [2]. Furthermore, we have 

(Qu - Qdo), v& = (Qu - Qu@), v)~ + (Qu"" - u(O), v)~ (3.12) 

But there follows from the identity (3.9) 

( Qu(O) - U(O), V)p = b J [Crij (U(O)) - pij (u”‘)] Eij (V) dV (3.13) 
V 

Applying condition (3.5) to (3.13) and setting v = u - u(O) in (3.12), we obtain 

II Qu - u(O) IlaD < (cl + Pm) r < 7. 
i. e., the operator Q which performs the compression mapping, does not extract any 

point from the neighborhood (3.7). Hence, according to the principle of compression 
mappings [a], there exists a generalized solution of problem A. Its uniqueness fol- 
lows from the appropriate application of Theorem 2.3. 

It follows from (3.11) that the successive approximdtions converge as a geometric 
progression with the denominator q. The corollary of (3.11) 

11 ll@) - u* IllI Q AlI u(1) - u(O) I& 

has a more practical value. The theorem is-proved. 
The convergence of L (d")) to L (u*) follows from the convergence of u@) 

to u* [q. In order to obtain a more rapid convergence of the iteration process than 

a geometric progression, a constraint should be applied on the second functional der- 

ivatives of the governing relations (1.1). For an arbitrary symmetric tensor h let the 
following inequality be valid 

(3.14) 

Moreover, let us assume that the space IT, with the scalar product introduced 

(u, V)lZ 1 [&dU)]%(V)dV 

V 

is a Hilbert space for the functions u E U. defined in a finite domain I’. Then 
the following theorem is valid 

Theorem 3, 2. (“Rapidly converging*’ method). Let the operator Pij of 
(3.1) have the form 

pij (h) = ~ Fvkl 
kl 

and let a unique generalized solution of the appropriate problem A,, exist. Let 
the inequalities (3.14) and the inequality 

O<ml\(Ml 

be satisfied. Moreover, let a be a positive number such that 
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s [oij (u(O)) - pij (u(O))] Qj (u(O)) dV < mla 
V 

j Eij (U(O)) Fij (U(O)) dV 

Then there is a number CL 

O<CC\(i 

such that the problem A has a uniquegeneralizedsolution u* in the neighborhood 

11 u(O) - u* III < r.0 

if the inequality 

q < a%; q z 3/z -& V+‘, C z a (1 + a)-(l+@la 

is satisfied, where r,, is the least root of the equation 

qr.r+a - r+a=O 

Starting with u(O) a successive approximations process converges to this solution for 
p = 1 , where 

The proof of this theorem is presented in [6]. Certain examples of applying Theor- 
ems 3.1. and 3.2 to specific viscoelastic and elastic-plastic media are constructed 

there. 

4. Now, let us assume that the operator relations (1.1) are uniquely solvable for 
the strain 

Eij = Gij (0) 
(4.1) 

As is known, the Saint-Venant compatibility equations which make the symmetric in- 

compatibility tensor 11 vanish 

Thj z QIEjmn&kn, lm z 0 (?l s Ink 8 = 0) (4.2) 

are the integrability conditions for the system of differential equations (1.2) in the 
dispiacements. 

For a simply connected domain V the conditions (4.2) are necessary and suffici- 

ent for unique solvability (1.2) in the displacements, for instance, in the form propos- 

ed by Cesaro [7] 
M(x) 

Ui (x) = Ui’ - (zj - zj’) @%j’ + ,h, [‘%n+(zj - EJ(emi, j - Emj, i)IGm (4*3) 

where Ui’ and Oij’ are known values of the displacements and rotations at some 

point M’ (x’) of the domain V. Therefore, if conditions (4.2) are satisfied then 

there exists a vector u for which the Cauchy relationships are valid. According to 
(4.2), the deviator and the spherical part of the tensor q evidently vanish. Hence, 

their comination also vanishes: 

Aqj + 8, ij - qk, kj - ejk, ki f Eij (Ekl, kl - W = 0 

where g is an arbitrary symmetric constant tensor. 

(4.4) 
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Substituting (4.1) into (4.2) and (4.3), we obtain a system of six equations in the 
stress tensor components and boundary conditions 

rlij (0) = 0 (4.5) 

Ui (U) 12, 0 U$‘, CTij?Zj I& = Sp 

Therefore, a formulation of the quasistatic (static) problem of the mechanics of a de- 

formable solid is given in stresses (problem B) by the relations (1.3), (4.2), (4.1) 
or (1.3) and (4.5). The formulations of problems A and B are evidently mutually 

equivalent. 
Let us multiply (1.2) scalarly by the tensor r E To and let us integrate over the 

volume V. Then by using the Ostrogradskii-Gauss theorem and condition (1.1) 
we obtain 

(4.6) 

Let us call the tensor cr E T for which the governing relations (4.1) are valid and 
which satisfies the identities (4.6) for every sufficiently smooth tensor function Z E 

T, the generalized solution of the problem B . In other words, the tensor- function 

0 E: T satisfying the integral identity 

s 
Eij (C) Tij dV = A& (U”) (4.7) 

for every smooth tensor func&n z E T, is called a generalized solution of the 
problem B . It has been shown above that the solution of problem B is also its gen- 
eralized solution. 

T h e o r e m 4 . 1. If the generalized solution is sufficiently smooth, then it 
is a solution of problem B . 

Indeed, the solution of problem B in a simply-connected domain should satisfy 

ConditiOnS (1.3), (4.2), (4.1). By the definition of the generalized solution, (1.3)s 
the relations (4.1). and the second of the boundary conditions in (1.3) are satisfied. 

Introducing a SyStem of Smooth fUIICt.iOnS Xi (3, x E v and xi’(y),y =x2 (general- 
ized Lagrange multipliers), we can write 

f lT~jTr?jU~“dZ - [ Eijtij dV- $ Xi (Oij, j + Xi) dV -S Xi (Oijnj - SC) Cl2 = 0 t4* 8, 
21 if 
Applying the Ostrogradskii-Gauss theorem to (4.8), WE: obtain because of the arbitrari- 

ness of the field z E To 

8ij = l/z (Xi,j + Xj,i), Xi ICI = Ui” (4.9) 

For a continuous field x to exist, it is necessary and sufficient to satisfy conditions 
(4. Z), where compliance with the first of the boundary conditions (1.3) follows from 

(4.9). 
Now, let us assume that the strain tensor is potential, i. e., a scalar operator of 

the stresses w (a) exists such that 

Eij = Gij (u) = aW (U)/aDij (4.10) 

In this case, the so-called “Castiglianian” K can be introduced by means of the 
formula 
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Then, the identity (4.7) can evidently be written in the form 

DK {a, 2) = 0’ 
Therefore, the problem of seeking the generalized solution of the problem B is equiv- 
alent to seeking the “stationary point? of the Castiglianian K (0). 

Without examining the conditions for the existence of a maximum of the 
Castiglianian, let us note the following. According to the generalized Legendre trans- 
formation, we set the operator w ((r) for which the relations (4.10) are satisfied in 
such a manner that the identity 

W + W - CTijEij = const (4.11) 

is satisfied, in correspondence to the operator W (E) for which the relations (2.3) 
are valid. Hence, if W (0) = 0 and w (0) = 0, then the constant in the right 
side of (4.l.l) equals zero. 

T h e o r e m 4 . 2. The Lagrangian agrees with the Castiglianian at equilibrium. 
Indeed, let us examine the identity (1.5). Using the relationship (4.11) we obtain 

L (u*) = K (a*) 

where u*, cr* are solutions of problems A and B , respectively. 

5. Now, let us give a new formulation of the problem of the mechanics of a 
deformablesolidinterms ofstresses. To do this, we apply the operation Def to the 
equilibrium equations (1.3) 

sij z ‘12 (air, kj + ojk, ki f xi, j + Xj, i) (5.1) 

By using the compatibility equations (4.4), written in stresses and the relationships 
(5. l), we form the equation 

Aa,j (0) + 0, +j (o) - air, kj (0) - ejk, ki (0) + ‘$j (Ekl, kl (a> - Ae (@)) c (5* 2, 

Qij(S) +(!Lj - hj) Qmm(S) = 0 

where Qij are components of the symmetric tensor operator of the tensor (5.1). We 
write the equilibrium equations for points on the surface of the body x 

(%, j + Xi) 1.X = 0 (5.3) 

Therefore, we have six equations (5.2) in six independent components of the stress 
tensor o and six boundary conditions (4.5) and (5,3). This is indeed a new formula- 

tion of the problem of mechanics of a deformable solid in terms of stresses(the problem 

B) VI. 

Theorem 5. 1. If the operatoe of the governing relations (1.1) and (4.1) 
are mutually inverse, the problems A and B are mutually equivalent. 

It has been shown above that the formulation of problem B follows from the 

formulation of problem A. Now, let a formulation of problem B be given, Let 

(5.2) be convoluted with the unit tensor 6i, 

(2 - t,) [A9 (n) - ‘%l. kl (0) - Qmm @)I (5.4) 

We now apply the operation Div to (5.2) 

(&j - 6j) [Ae (a) - EkZ, kl (a) - Qmm (s)l,j f Qij, j (s) = 0 (5.5) 
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It follows from (5.4) and (5.5) that for Emm # 2 

Qij, j(S) = 0 (5.6) 

If the operator Q is such that its functional derivatives with respect to the tensor 
(5.1) satisfies conditions (2. S), then (1.3) follows from (5.6) and (5.3). The validity 
of the compatibility conditions (4.4) hence follows, meaning (4.2) is also valid. 
Hence, there exists a vector u for which the relations (1.2) are valid. The theorem 
is proved. 
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